Building Detection from Multispectral Imagery and Lidar Data Employing a Threshold-free Evaluation System

نویسندگان

  • Mohammad Awrangjeb
  • Mehdi Ravanbakhsh
چکیده

This paper presents an automatic system for the detection of buildings from LIDAR data and multispectral imagery, which employs a threshold-free evaluation system that does not involve any thresholds based on human choice. Two binary masks are obtained from the LIDAR data: a ‘primary building mask’ and a ‘secondary building mask’. Line segments are extracted from around the primary building mask, the segments around trees being removed using the normalized difference vegetation index derived from orthorectified multispectral images. Initial building positions are obtained based on the remaining line segments. The complete buildings are detected from their initial positions using the two masks and multispectral images in the YIQ colour system. The proposed threshold-free evaluation system makes one-to-one correspondences using nearest centre distances between detected and reference buildings. A total of 15 indices are used to indicate object-based, pixel-based and geometric accuracy of the detected buildings. It is experimentally shown that the proposed technique can successfully detect rectilinear buildings, when assessed in terms of these indices including completeness, correctness and quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic detection of residential buildings using LIDAR data and multispectral imagery

This paper presents an automatic building detection technique using LIDAR data and multispectral imagery. Two masks are obtained from the LIDAR data: a ‘primary building mask’ and a ‘secondary building mask’. The primary building mask indicates the void areas where the laser does not reach below a certain height threshold. The secondary building mask indicates the filled areas, from where the l...

متن کامل

Object-based Building Detection from Lidar Data and High Resolution Satellite Imagery

This paper presents a scheme for building detection from LIDAR data and high resolution satellite imagery. The proposed scheme comprises two major parts: (1) segmentation, and (2) classification. Spatial registration of LIDAR data and high resolution satellite images are performed as data pre-processing. It is done in such a way that two data sets are unified in the object coordinate system. Th...

متن کامل

Evaluation of a Method for Fusing Lidar Data and Multispectral Images for Building Detection

In this paper, we describe the evaluation of a method for building detection by the Dempster-Shafer fusion of LIDAR data and multispectral images. For that purpose, ground truth was digitised for two test sites with quite different characteristics. Using these data sets, the heuristic model for the probability mass assignments of the method is validated, and rules for the tuning of the paramete...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

Various Building Detection Methods with the Use of Image and Lidar Data

Original scientific paper In this work, an automated approach for building detection using airborne images and LIDAR data is presented. A combined approach of four methods achieved the best results, using slope-based DSM filtering as well as classification of multispectral images, elevation data and vertical LIDAR point density. The first variant of building detection is based on multispectral ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010